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ABSTRACT 

S o m e  M o r e r a  a n d  m e a n - v a l u e  t y p e  t h e o r e m s  a r e  p r o v e d  in t h e  h y p e r b o l i c  

disk. 

1. S t a t e m e n t  o f  p r o b l e m s  a n d  resu l t s  

1.1 In [BZ2] a general Pompeiu transform was introduced as follows. Let X be 

a locally compact topological space, G a topological group acting continuously 

and transitively on X, and # a Radon measure on X which is invariant under G. 

For a fixed compact K C X one defines the P o m p e i u  t r a n s f o r m  P = PK by 

P: C(X)  , C(G) 

P f ( a )  := [ f d#. 
Ja (K) 
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Note that  the invariance of # implies that P f ( a )  = f K ( f  o a) d#. The problem 

posed is to decide whether K has the P o m p e i u  p r o p e r t y ,  i.e., whether P is 

injective. 

A typical example is that of X = (2, G = M(2), the group of holomorphic 

rigid motions of the plane, # = m, the Lebesgue measure, and I(, the closure of 

a Jordan domain ~t. 

Assuming that ~ is a Lipschitz domain (in particular, 0~  has no cusps), we can 

also consider whether F = 0~2 has the (global) M o r e r a  p r o p e r t y ,  i.e., whether 

any f E C(C) that satisfies 

f ( z )  dz = O, for a E G, every 
(r) 

is necessarily an entire function. It is easy to see that it is enough to consider 

functions f E C 1(C). Then, by Stokes' theorem, the above condition is equivalent 

to 

(K) (g) -~Z dm -= 0, for every a E G. 

So that,  in this situation, the Morera and Pompeiu properties are equivalent. 

These problems have led to a considerable amount of research, and we refer the 

reader to [Z] for an account of it. For instance, one can prove that if F is a 

triangle (or any Lipschitz Jordan curve that is not real analytic) then it has the 

Morera property. 

A priori, it would seem that the set up we have just stated is the only reasonable 

one to obtain interesting results, but it turns out that there are natural questions 

where it is not true that the whole group G operates on X, only a neighborhood 

of the identity, or the measure # cannot be taken to be invariant. For instance, 

in [BG] the local Morera problem was considered and it was shown that,  given 

a Jordan curve F with the global Morera property and such that it is contained 

in the open disk D(0, 1/2) of center 0 and radius 1/2, then any function f E 

C(D(0, 1)) which satisfies 

f ( z )  dz = 0, for a E M(2), a(F) C D(0, 1), every 
(r) 

is holomorphic on D(0, 1). Clearly, only a neighborhood of the identity of M(2) 

operates on X = D(0, 1). On the other hand, as explained above, we can still 

couch this problem in terms of the Pompeiu problem with an invariant measure. 
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In this paper we consider several instances where the measure cannot be taken 

invariant. 

1.2 Let D be the unit disk in the complex plane, and let M be the Mhbius 

group of conformal automorphisms of D. 

Let F be a piecewise-C 1 Jordan curve in D. If f is a holomorphic function on 

D then, for every cr • M ,  f o a is holomorphic too, and by Cauchy's theorem we 

have 

(1.1) Jr(f o a)(z)  dz = O, for every a • A4. 

Our first goal is to investigate the converse result or Morera problem: 

When is it true that every f • C(D) satisfying (1.1) is necessarily holomorphic 

on D? 

Observe that the measure dz/r  is not invariant under the action of A/~, and there 

is no way to formulate this problem using invariant measures. 

We denote, as usual, D(c, R) the open Euqlidean disk in (2 centered at c • C 

with radius R > 0. If F is a circle, i.e., F = OD(c, R), the above problem is 

completely solved by means the following circular Morera theorem: 

THEOREM 1: 

satisfies 

Let D = D(c ,R)  CC D. Assume that a function f • C(D) 

f 
(1.2) [ ( f  o a)(z) dz = 0, for every a • M .  

Jo D 

(a) I f  c # 0 then f is holomorphic on D. 

(b) I f  c = 0 there are nonconstant radial real analytic (so nonholomorphic) 

functions on D satisfying (1.2). But  if  f C C(•) verifies (1.2) for a family 

of circles OD(O, Rj) ,  j • J, such that the equations 

(1.3) p - 1  ~,1 - R~]  = 0 (j • J)  

have no common solution z • C, then f is holomorphic on D. 

Here we denote P~, as usual, the associated Legendre functions of the first 

kind. 

Remarks: (a) The result of part (b) is sharp in the sense that if the radii rj, 

j • J,  do not satisfy the stated condition then there are nonconstant radial real 

analytic (so nonholomorphic) functions verifying (1.2) for the circles OD(O, Rj) ,  

j C J .  
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(b) When c = 0 only two radii R1, R2 are sufficient to imply the holomorphy of 

f .  In fact, using the classical theory of selfadjoint ordinary differential operators 

(see [LS]) it is possible to show that the family of pairs of radii R~, R2 failing 

the condition stated in part b) above has measure zero in the unit square. 

For general curves F we obtain the following "general" Morera theorem: 

THEOREM 2: Let ~t CC D be a Jordan domain of class C2,% for some 0 < e < 1. 

Suppose that the Jordan curve F = Oft is not real analytic. Assume f E C(D) 

satisfies 

(1.4) / r ( f  o a)(z) dz = O, for every a E A/~. 

Then f is holomorphic on D. 

In order to compare the above results with some previous ones, we recall the 

invariant version of the Morera problem we have posed. It consists of deciding 

whether every f E C(D) which verifies 

(1.5) f f ( z )  dz = 0, for every a C 2¢1, 
Ja (r) 

is holomorphic on D. 

An argument similar to the one we made in 1.1 for the Euclidean case shows 

that the above problem is equivalent to the Pompeiu problem in the hyperbolic 

disk. (Here the Radon measure involved is the hyperbolic invariant measure 

dp(z) = din(z)~(1 -IzI2)2.)  

When F is a circle the invariant problem was completely solved by the following 

result due to Berenstein and Zalcman: 

THEOREM 3 ([BZ1, p. 125-6]): 

(a) Let D = D(O,R), 0 < R < 1. Then there are nonconstant radial real 

analytic (so nonholomorphic) functions on D satisfying (1.5) with F = OD. 

(b) I f  f E C(D) verifies (1.5) for F running on a family of circles ~D(O, Rj),  

j C J, such that the equations (1.3) have no common solution z E C, then 

f is holomorphic on D. 

The remarks to Theorem 1 are also valid for Theorem 3. 

Note that in Theorem 1, in case c ¢ 0, the hypothesis always implies the 

holomorphy of the function. In other words, there are no exceptional radii and 

we have a one-radius theorem, in contrast with Theorem 3 and the case c = 0 

of Theorem 1, both of which are two-radii theorems. Observe also that the 



Vol. 86, 1994 MORERA THEOREMS 65 

hypothesis  of the noninvariant  theorem for c = 0 is in some sense close to tha t  of 

the invariant theorem, a l though they are formally different. Furthermore,  bo th  

results have the same critical set of radii. 

For general curves, the best known result for the above invariant problem, 

which was obtained by Berenstein and Shahshahani,  is much bet ter  than  ours: 

THEOREM 4 ([BS, p. 125-6]): Let ~ CC ]I) be a Lipschitz Jordan domain, 

whose boundary F = O~ is not a real analytic curve. Then, if  f E C(D) satisfies 

(1.5), it is holomorphic on D. 

The reason tha t  we cannot  prove Theorem 2 for nonreal-analytic boundaries of 

Lipschitz Jo rdan  domains is rather  technical. It depends on the nonavailability of 

a s t rong enough regulari ty theorem for elliptic systems of differential equations 

with boundary  conditions. In the invariant case, only an elliptic differential 

equation with boundary  conditions is involved and there is a deep regularity 

result for this type of equations, due to Caffarelli [C], which allows one to prove 

Theorem 4. 

For a more detailed exposit ion on Morera problems and related topics we 

recommend the recent survey [BCPZ]. Other  holomorphy tests which are based 

on the Cauchy integral formula (instead of Cauchy 's  theorem) can be found in 

[CP]. 

1.3 We also consider mean-value type problems of the same noninvariant nature 

as the above Morera problem. 

Let D = D(c, R) CC D. If  f is an harmonic function on ID then, for every 

c~ C AA, f o ~ is harmonic too, and therefore it has the mean-value proper ty  

£ Id¢l 
(1.6) ( f  o e ) ( ( )  2~R  = ( f  o ~)(c), for every ~ e A4. 

D 

Thus  it turns  out  tha t  the natural  mean-value problem here is to s tudy  the 

converse result: Is it true tha t  every f E C(II~) satisfying (1.6) is necessarily 

harmonic on ID? 

Observe tha t  when c = 0 the above problem can be s tated using an invariant 

measure, namely the hyperbolic arc-length measure. In fact, if c -- 0, letting 

R = t anh ( r /2 ) ,  for r > 0, it is easy to check that  condition (1.6) can be rewrit ten 

a s  

(1.7) I j f  f (~)  Id(I 
7r s i nh r  (oo(0,n)) 1 - I([ - - - - ~  - ( f  o 0)(0),  for every ~ E A4. 
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The solution to the above invariant problem was given by the following two- 

radii theorem: 

THEOREI~: 5 ( [BZ1,  Thm. 3]): 

(a) Let D = D(0, R), 0 < R < 1. Then there are nonconstant radial real 

analytic (so nonharmonic) functions on D satisfying (1.6). 

(b) I f  f 6 C(D) verifies (1.6) f o r a  family of circles OD(O, Rj), j 6 J, such that 

the equations 

P~ [ 1 - - ~ j  ] = 1 (j 6 J) 

have no common solution z 6 C, except z = 0, 1, then f is harmonic on D. 

Here Pz denotes, as usual, the Legendre function of the first kind pO. 

The remarks to Theorem i also hold for the above result (replacing holomorphic 

by harmonic). 

On the other side, the mean-value problem we have stated can not be formu- 

lated using an invariant measure if c # 0. In that  case we have the following 

one-radius mean-value theorem: 

THEOREM 6: Let D = D(c,R) CC D and c # O. Every function f 6 C(D) 

satisfying (1.6) is harmonic on D. 

Observe the similarity of the above result with Theorem 1.a). We can say that  

the first one is the harmonic version of the second one. 

1.4 Finally, we consider a noncentered or general mean-value problem. 

Let P = PD be the Poisson kernel of the disk D = D(c, R) CC D, that  is 

R 2 - ] z - c ]  2 ( z 6 D ,  ( • 0 V ) .  
- z? 

Fix a point a • D. If f is an harmonic function on D then so is f o a,  for every 

a • Ad, and therefore 

fo o . . . .  Id;I (1.8) ~(a, i ) ( f  a ) ~ )  ~ R  = ( f  o a)(a), for every a • Ad. 
D 

Thus the general mean-value problem is to decide whether every function f • 

C(D) satisfying (1.8) has to be harmonic on D. 

Note that,  when the point a coincides with the hyperbolic center of D, i.e., 

D(c, R) = 7(D(0, r)), where r is the conformal automorphism 

z + a  
r(z) -- 1 + gz (z • D), 
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by making the change of variable ~ = T(~) the identity (1.8) can be written as 

f ( f  o a ) ( ~ / ) ~  = ( f  o a)(0), for every a E A~. 
Jo D(0,r) 

Thus in that case the general mean-value problem is identical to the mean-value 

problem at the origin which we discussed in 1.3 and whose solution is given by 

Theorem 5. 

For the other case we obtain the following one-radius general mean-value the- 

orem: 

THEOREM 7: Let D = D(c,r)  CC D and let a E D. Assume that a does not 

coincide with the hyperbolic center of D. Then every function f e C(D) which 

satisfies (1.8) is harmonic on D. 

Observe that Theorem 6 is just the particular case a = c of Theorem 7. So we 

will only prove the second theorem and obtain the first one as a corollary. 

1.5 The plan of the paper is the following. In the next section the basic 

notation and simple technical results required to prove the above stated results 

are introduced. Our circular and general Morera theorems (Theorems 1 and 2) 

are proved in Sections 3 and 4, respectively, while the proof of the general mean- 

value theorem (Theorem 7) is carried out in Section 5. 

The proof of the circular Morera theorem as well as the general mean value 

theorem is done, roughly speaking, in the following way. First we show that  the 

circular Morera problem is really the problem of proving our function is harmonic. 

Then the hypothesis is written as a corresponding convolution equation in the 

Mhbius group A,4. We associate to that equation a closed ideal of bi-invariant 

compactly supported distributions on .M, that is, radial compactly supported dis- 

tributions on D. Some harmonic analysis on A,~ (basically, the spherical Fourier 

transform on M and the spectral synthesis theorem of Schwartz) shows that  this 

ideal is either the whole space of bi-invariant compactly supported distributions 

on A,4 and then our function is harmonic, or otherwise there is some nonharmonic 

function satisfying the hypothesis. 

The approach in the proof of the general Morera theorem is really different, due 

to the impossibility of carrying out explicit computations (as in the preceding case 

of circles) for a general curve. After reducing the problem to an harmonic one as 

in the circular case, we use a reductio ad absurdum argument. Roughly speaking, 

since now the technicalities are much more complicated than in the circular case, 
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we prove that,  if a function satisfying the hypothesis is not harmonic, a certain 

elliptic system of differential equations with boundary conditions in the Jordan 

domain we considered has solutions with an adequate regularity. The use of a 

regularity result for such a type of systems shows the solutions are really real 

analytic, and then so is our curve, which is a contradiction. 

We finish the paper with Section 6 ,  where we discuss some problems related 

to the mean-value ones we deal with above, but which can not be attacked with 

the methods we use here. 

2. S o m e  n o t a t i o n  a n d  t echn ica l  tools  

The present section is devoted to introducing some notation and technical tools 

we will use in the remaining sections. 

Throughout this work we shall mainly follow the notation of [BZ2] and [Hel2], 

but, for the sake of completeness and to make easier the reading of the paper, 

we summarize that one we will often use in the proofs of the theorems. 

2.1 We recall that  the hyperbolic disk is the Riemannian manifold of constant 

curvature - 4  obtained by endowing the unit disk D with its usual manifold 

structure and the hyperbolic inner product on its tangent bundle T(D), which is 

defined to be 

(X, Y) (X, Y e Tz(D), z E D), (2.1) <X, Y)h -- (1 - Iz12) 2 

where (.,-) denotes the usual Euclidean inner product. Thus the hyperbolic arc 

length is given by 
ds 

(2.2) dsh - 1 - I z l  - - - - - - ~ '  

ds  = Idz] being the Euclidean arc length. The corresponding distance, i.e., the 

hyperbolic distance, is 

1 1 + p(z, w) (z, w e D), 
d(z, w) = -~ log 1 - p(z, w) 

where p is the so-called pseudohyperbolic distance: 

Z--W I (2.3) p(z, w) = ~ (z, w e D). 

The Euclidean disks which are relatively compact in D coincide with the hyper- 

bolic disks (as well as the pseudohyperbolic ones). Namely, the Euclidean disk 
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D = D(c, R) CC D coincides with the pseudohyperbolic disk A(co, r) = { z E 

D: p(z, co) < r }, where the pseudohyperbolic center Co C D and pseudohyper- 

bolic radius 0 < r < 1 are related with the corresponding Euclidean ones by the 

identities 
1 - r 2 1 - I co ]  2 

(2.4) c - 1 - r2[c0l 2 CO and R - 1 - r21col 2 r 

(see [G, p. 31). 

The positive measure and the Laplace-Beltrami operator, i.e., hyperbolic mea- 

sure and hyperbolic Laplacian, respectively, associated to the hyperbolic metric 

are given by 
1 

(2.5) dp(z ) -  ( 1 -  Izl2) 2 dm(z) 

and Ah = (1 - ]z]2)2A, respectively, where m and A are the Lebesgue measure 

and the Euclidean Laplacian on C, respectively. 

The hyperbolic metric is invariant under the action of M ,  and so are all the 

above concepts derived from it. 

2.2 By means of the standard identification of M5bius mappings with 2 x 2- 

matrices, the M5bius group AA is identified with the classical Lie group 

su,11, ) = : a, b • C, lal 2 - Ibl 2 = 1 (modulo -t-Id). 

Thus A//is a transitive Lie transformation group of the real analytic manifold 

D (for the definition of transformation group and related concepts see [Hell, Ch. 

II, §3]). 

Using the usual group conventions e will denote the identity mapping on D, 

and sometimes the composition g o h, for g, h • A/I, will be simply written as gh. 
The subgroup /C of M which leaves the origin fixed is the group of all rota- 

tions around the origin, i.e., using the above identification/C corresponds to the 

compact subgroup 

0) } 
s o ( 2 )  = o ~ : a  e C, lal = 1 

of SU(1, 1). It turns out that  the set A4/K; of left cosets g/C (with the quotient 

topology) carries a natural  real analytic manifold structure such that  the mapping 

M / ~ :  , D 

glC , , g(0) 
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is a real analytic diffeomorphism (see [Hell, Ch. II, §4]). Thus D will be consid- 

ered as the homogeneous space .M/tO using the above identification. We finally 

recall that (Ad, K:) is a Riemannian symmetric pair (see [Hell, p. 209] for the 

definition) and, in particular, the hyperbolic disk D and the homogeneous space 

. M / ~  can also be identified as Riemannian globally symmetric spaces (see [Hell, 

Ch. IV, §3]). In fact, an involutive automorphism on Ad satisfying the conditions 

of the definition of symmetric pair in this case is 

Og = kgk -1 (g C .hi), 

where k(z) = iz, z E D. 

2.3 Let ~r denote the canonical projection (or quotient mapping) from Ad onto 

Ad/K: = D, i.e., 7r(g) = g(0), for every g E Ad. 

We identify locally integrable functions with distributions on D by means of 

the hyperbolic measure d# given by (2.5), which is invariant under the action of 

2M. The lifting of d# by 7r is a left- and right-invariant Haar measure, usually 

denoted by dg, on Ad, i.e., 

We use that measure dg to identify locally integrable functions with distributions 

on J ~ .  

We denote by dk the normalized Haar measure on K:, i.e., for ~o E C(;C) we 

have 

f~c fo 2'~ __dO where ko(z) = e~°z. ~(k) dk = ~(ko) 2~r' 

Let disc be the compactly supported Radon measure on Ad defined by 

(5~, ~) : = / ~  ~(k) dk (~ e C(M)) .  

A function ~ on M is r igh t - invar ian t  (under ~)  if ~(gk) = ~(g), for every 

k c ~ .  

A distribution T on M is r igh t - invar ian t  (under ~)  when 

(T, ~) = (T, g H ~p(gk )), for every k E/~. 

Left-invariant (under /~) functions or distributions are defined in a similar 

way. The term "bi-invariant" means left- and right-invariant (under ~). The 
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subscript "0" will be used to denote bi-invariance, for example, C~(A4) is the 

space of compactly supported bi-invariant distributions on Ad. 

If qa is a right-invariant (left-invariant) function on ~4 then the function ~, 

defined by 

:= (9 e M ) ,  

is left-invariant (respectively, right-invariant). 

If T is a right-invariant (left-invariant) distribution on M then the distribution 

2 ~, defined by 

(2b, ~ ) : =  (T, qh) (~ e :D(M)), 

is left-invariant (resp., right-invariant). 

2.4 The convolution of two nice functions ~ and ~b on A/l is defined by 

(¢Z * ¢)(9) =/M ~(gh-1)¢(h) dh (g e A.4). 

The bi-invariance of the Haar measure of A/l implies that 

(~ * ¢)(9) = / ~  ~P(h)¢(h-lg) dh (g • .Ad). 

Then the notion of convolution is extended to distributions on Ad in the usual 

way. 

If T and S are distributions on AA, one of them with compact support, then 

T * S is left-invariant (right-invariant) when T (resp., S) is. Thus C~(Ad) is a 

topological convolution algebra. 

Given any nice function ~ on A/I we can consider the function ~ on D which 

is determined by 

The operator "~r sends the usual spaces of functions on M (L~oc(A.4), $(AJ), 

D(Ad), . . . )  onto the corresponding spaces on D. Then any T • :D'ID ) lifts to a 

right-invariant distribution T on .£4 given by 

(T, ~) = (T, ~ )  (~ • ~(D)). 

If T has compact support so does T. 

The lifting of A h to J~ is the differential operator z~ h on  J~ defined by 
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If  we consider a function ~ on D as a distribution, then we have tha t  

= ~ o zr and (~)~ = ~. 

Moreover, any distribution T on AJ determines a distr ibution T= on • which 

is defined by 

:=  (T, • 

The operator  ": establishes a bijection from the usual spaces of distributions 

(functions) on D onto the corresponding spaces of right-invariant distributions 

(resp., functions) on h4,  and .~ is just the inverse operator.  

3. P r o o f  o f  t h e  c i r c u l a r  M o r e r a  t h e o r e m  

3.1 First we reduce our "holomorphic" problem to an "harmonic" one. 

LEMMA 1: If  f is an harmonic function on D that verifies (1.2) then f is holo- 

morphic on ]). 

Proof." If  f is harmonic on D then so is f~- = Of/O~.. Therefore it satisfies the 

mean-value proper ty  and so, by Stokes' theorem, we have 

lID f-~(x + iy) dx dy - l ~a f ( z )  dz = O. f-E(c) = ~ f f  (c,R) iTrR2 D(c,n) 

The last identity is (1.2), c~ being the identity mapping  on D. But  if f verifies 

(1.2) then so does f o a,  for every u E A4. Hence 

cg(f o o') 
0 - ( c )  : 

so, since a'(c) ¢ O, f-~(a(c)) = 0, for every u E A4. 

In conclusion, f~- - 0, i.e., f is holomorphic on D, because A4 acts transit ively 

on D. 

Thus, by lemma 1, we only have to s tudy whether (1.2) implies f is harmonic 

on D. 

3.2 For computa t ional  reasons tha t  will become apparent  later, it is convenient 

to write condition (1.2) in terms of line integrals over a circle centered at the 

origin. To do this we recall tha t  the Euclidean disk D = D(c, R) CC D coincides 
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with the pseudohyperbolic disk A(co, r), where co and r are related with c and 

R by the formulas (2.4). Then the automorphism of D 

Z - -  C 0 

(3.1) ~0(z) - 1 - ao~ 

maps COD = coA(co, r) onto OA(O,r)  = OD(O,r),  so by making the change of 

variables ~ = ao(Z) we obtain that 

So fi<l=~ (f° (11- ]c°le-~ Eo~) 2 d~. D( f o a o ao)(z)  dz = a)(~) 

Therefore (1.2) can be written in the following equivalent form: 

(3.2) ( f  o a)(()  (1 + ~o~) 2 - 0, for every a e .M. 
I = r  

Now observe that (3.2) can be rewritten as the following convolution equation in 

the MSbius group .M (see [BZ2, pp. 598-9] where a similar case is treated): 

(3.3) ] *  T = 0, 

T = T o o  being the compactly supported Radon measure on D defined by 

T~ = j(¢ ~(~) d~ 
I=~ (1 + ao() 2 2~iv (~o E C(D)).  

Observe that T~o = 0 for every holomorphic function ~o on D, and, in particular, 

T vanishes on the constant functions. 

3.3 Recall that the (hyperbolic) derivatives ~ of the Dirac delta measure 

at the origin 770 are given by 

OJ+kSO OJ+ k ( ~o( z) 
(3.4) < ~ ,  ~> = ( - 1 )  j+~ 

COzJO-~ k (1 -Izl2)2) (0) (~ e E(D)). 
The corresponding Euclidean derivatives Dj,k~O are defined to be 

(Dj,k~o, ~) = ( - 1 )  j+~ aJ+% (0) (~ ~ E(D)). 
cO z J cO-5 k 

In order to study whether (3.3) implies that f is harmonic, consider the closed 

convolution ideal Z- in E~(J~4) generated by all the distributions of the form T * 

(Dj,k~o) ~ , j ,  k >_ O, and observe that 

(3.5) ] * R = 0, for every R E 2". 
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Let us remark that in the definition of 27 we can replace the Euclidean deriva- 

tives Dj,kSo by the hyperbolic derivatives ~ In fact, it is easy to prove the 
O z  J 0-~ ~ " 

following formula: 

(3.6) cOj+k5 ° _ min{j,k}E (e + 1 ) j ! k !  
cgzJ O-2 k ( j  - g)!( k - g)! Dj-e,k-e6o,  

~=0 

which shows that the two linear subspaces of $'(D) spanned by the families 

{ ~ } j , k > 0  and {Dj,aSo}j,k>o, respectively, coincide. 

3.4 Now we recall the concept of spherical function and spherical Fourier trans- 

form in .A4 / K ~ D. 

A spherical  funct ion on M / I C  is any eigenfunction ~ E C~(A4) of/Xh such 

that ~(e) = 1. That is, the spherical functions on A/[/IC are the liftings to A4 

of the radial eigenfunctions ~ of the hyperbolic Laplacian Ah normalized by 

~(0) = 1. Equivalently, ~ E C0(M) is a spherical function on A4/h: if it satisfies 

the functional equation: 

pc ~ (gkh  ) dk = ~ (g )~(h )  (g, h • All) 

(see [Hel2, pp. 399-400]). 

For every )~ • C there is only one spherical function ~ such that /Xh~ = 

--(1 + A2)~o~, which is given by (see either [BZ2, (6.2)] or [Hel2, p. 40]) 

(qa~)~(w)=F( l+2  ' 2 i A  1 - i A ; 1 ;  1ZF~I2 ] [ w [ 2  ~ ( w • D ) ,  

where F(a,  b; c; z) represents, as usual, the classical hypergeometric function. 

The spherical  Fourier  t r ans form of ~b • D0(M) is defined by 

(j=~)(~) = f ~  ~(g)~(9  -1) dg = ( ¢ ,  ~ ) (e )  (~ • C), 

and the spherical  Fourier  t r ans fo rm of S • C~(.A4) is defined to be 

(J=s)(~) = ( s ,  ~ ) ( e )  (~ • c). 

By the theorem of Paley-Wiener-Schwartz, 9 v is an algebra isomorphism be- 

tween the convolution algebra $~(~/[) and the multiplication algebra E ~ of all 

even entire functions (of one complex variable) of exponential type which have 

polynomial growth on R. The topology of E' is defined in such a way that 9 r is 

a topological isomorphism (see [BZ2, pp. 606-608]). 
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As we will show later, the proof that the harmonicity of f is implied by (3.3) 

strongly depends on the fact that  + i  are the only common zeros of the functions 

in the closed ideal I = 5r(:Z -) of E ~ . 

It is easy to show that + i  are common zeros of the functions in I. In fact, if 

S E $'(1~) then 

~(~ • s)(~) = r ( (~ ,  ~ )~ )  (~ ~ c), (3.7) 

where 

(3.8) 

and 

( 5 .  ~)~(z)  = s [¢ ~ (~ )~  (1--U-~z)]~ - ¢ 

(3.9) (~)~ z - ¢  = F ( l + i ) ~  1- iA -Iz--_~l 2 
(1--~--~z) 2 ' 2 ;1;(1-1z12)(1-1(12).1" 

Therefore 
z - ¢  (~:i)'~ (1----~) = 1  (z,¢ c ~)), 

(3.10) 

and 

so (S * ~P:t:i),~ is a constant function, and hence $C(T * S)(=t=i) = 0, for every 

S E E'(D). Finally, since convergence in E' implies pointwise convergence, it 

follows that  +i  are common zeros of all the functions in I. 

In order to study whether the functions in I have other common zeros, in the 

next subsections we will find a simple family of generators of I. 

3.5 First we are going to show that the derivatives which appear in the defini- 

tion of 2- can be replaced by powers of the hyperbolic Laplacian composed with 

derivatives with respect to either z or 2. 

LEMMA 2: For every j, k > O, the distribution ~ is a linear combination of 
- -  O z J  0 - ~  ~ 

the distributions 

Aeh \f O~5°'~Oz n ]  ( O < g < m i n { j , k } ,  O < n < j - g) 

(0"5o "~ 
(3.11) A~ \ o r  / 

Taking into account (3.4) and the identities 

(o__~ ~ ( nor 
(3.12) (A~ k, as,, /,~P) = -1) ~ (A~ )  (0) 

,, o~° / ,  ~') = ( - 1 ) - ~  (a~ , ) (o )  

( 0 < g < m i n { j , k } ,  0 < n < k - Q .  

(~ e E(D)), 
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it is clear that Lemma 2 reduces to the  following computational lemma whose 

proof (which we omit) is done by induction. 

LEMMA 3: Let j,  k > 1 be integers. For every ~ E C(D), ~ is an $(D)-linear 
- -  Oz . i  O- ik  

combination of the [unctions 

and 

~ n 

( l < g < m i n { j , k } ,  O < n < j - [ )  

and 

generated by the functions 

: ( 
\ \ OzJ ]J ) (J' g >-0) 

fs'e=~ T* ~kO~lJ (j,e>o). 
3.6 Next we will show that I can be generated using only the derivatives of 

50 with respect to either z or 2, so we get rid of the powers of the hyperbolic 

Laplacian. 

For every S E g'(D), observe that 

AhS * ~ = AhS  * ~o~ = S * A h ~  = - (1  + ~2) (~ ,  ~ ) ,  

where the second identity follows from [Hel2, Thm. II.5.5], since A h is an Ad- 

invariant differential operator on the symmetric space 34//(: = D. By convolving 

on the left side with T we have that 

y ( ~  • AhS)(~) = -(1 + ~2) j= (~ ,  S)(~) (~ e C, S e E'(D)). 

o n 

02 ~- ( A ~ )  (1 < g < min{j, k}, 0 < n < k - g), 

whose coefficients are functions in g(D) which do not depend on ~ (they only 

depend on j and k). 

Conversely, any of the distributions (3.10) or (3.11) are linear combinations 

of hyperbolic derivatives of ~0. In fact, taking into account (3.4) and (3.12), we 

only have to show that, for every ~ e g(~)) and g >_ 0, Ah ~e is an g(D)-linear 

°J+k { ~ - - - - ~ )  (the coefficients being independent combination of derivatives ~ \ (1_1¢1~)~ ] 

of ~o, only dependent on [). And, once again, this is easily proved by induction. 

From the above discussion it follows that I = 9r(Z) is the closed ideal of E' 
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Applying the above formula ~7 times with S = o~Q aJ~ 9 oz~ , a-~ we obtain that 

hj,dA) = (-1)e(1 + A2) e 5v(:Y * (OJSo~ - 
t,-DTJ) ) (A) 

and 
f j , e (A)=(-1)e (1  + ~2)e-~ ( T  , ¢0J5o~ - \-D-~J ) ) ( ~ ) 

Therefore, it turns out that I is the closed ideal of E ~ generated by the functions 

= 

\ OzJ ] ] (J >- O) (3.13) 

and 
/ 

(3.14) fj = .~ t T  * \ a ~  ) ) (J > 0). 

3.7 Next we will compute explicitly the generators hj and f j ,  j > 0, of I. 

First observe that the hyperbolic derivatives ~ and ~ coincide with the OzJ O-~J 
Euclidean derivatives Dj,o~o and Do,jSo, respectively (see (3.6)). Then, letting 
S = o¢~ oJ~9 in (3.8) and taking into account (3.9), a straightforward compu- 

19zJ ~ 0-~ J 

tation using the Fa~ di Bruno formula shows that 

k t O z j  ] .~o~ ( z ) =  izlg-_l t, lz]2 1 , 
(3.15) 

and 

(3.16) [(/)J~o'~- ] ( z )J  ( ~l 2 ) * qO;~ (Z) = F (j) 
L\ o~: ] . Izl ~ -  1 \ lz l  ~ - 1 ' 

where F ( z )  = F ((1 + i A ) / 2 ,  (1 - iA)/2; 1; z). 
Therefore by (3.7) we have that 

hj 
( r 2 ) (  r ) J L2v e -i(j-1)O dO 

= F(J) ~ ~ ( l+~orei°)  2 27r 

{o ( ) ( 
= r J F(j) r 2 _ -j(-6or) j -1 ~ ~ i f j  > 1 

and 

fj = F(J) 
( r ) J L27r e i(j+l)O dO 

(1 + -6orei°) 2 2r 
- 0  (j >>_ o). 
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Hence, considering the functions 

(3.17) g j ( , ~ ) = F  (j) ~ = -~TzsF 2 ' 2 

Isr. J. Math. 

\ 
; 1;z]  (j >_ 0), 

/ 

we have just shown that I is generated by the gj, j >_ 1, if co ¢ 0, that is, if c ¢ 0 

(see (2.4)), and it is generated by gl if c = 0. 

Finally note that the function gl vanishes at +i  with multiplicity exactly equal 

to 1, so, in any case, the "common multiplicity" of the common zeros +i  in I is 

equal to 1. In fact, by [E, p. 102 (20)], 

(3.18) gl(,~) 1+'~2 ( 3 + i A  3 - i , ~  r 2 ) 1+,~ 2 
- - - F  ; 2 ;  - G ( A ) ,  

4 2 ' - V -  ~ 4 

and, by [E, p. 101, 2.8(4)], we have that 

( G ( + i ) = F  1 , 2 ; 2 ; ~  = l - r  2 > 0 .  

3.8 In this subsection and the next one we are going to study the case c ¢ 0. 

In that case, we claim that I has only two generators: gl(A) and (1 + A2)go(,~). 

First of all, observe that the function (1 + ,~2)go(,~) belongs to the ideal I. In 

fact, since F satisfies the hypergeometric equation 

1+,~ 2 
z(1 - z)F"(z) + (1 - 2z)F'(z) ------~F(z) = 0 (Rez < 0), 

it follows that 

4r2 41 + r 2 
(3.19) (1 + A2)go(A) = (1 - r2) 2g2(A) - 1--2-~ ga(A)" 

We finish the proof of the claim by showing that 

(3.20) gj(,~) = pj(.X)gl(2Q + q/(A)(1 + A2)g0(A), 

for every j _> 1, where pj and qj are polynomials. 

We proceed by induction on j .  For j = 1, (3.20) is obvious, while for j = 2 it 

is just another way of writing (3.19). 

Now assume (3.20) holds for j = k - 1, k - 2 (k > 2). We need to know that 

F satisfies the ordinary differential equation 

(3.21) z(1 z)F (k) + (k 1)(1 2 z ) F  (k - l )  (2k - 3) 2 + ~ . . . .  F (k-2) = 0 
4 
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on the half-plane R e z  < 0. Observe tha t  (3.21) easily follows since, by [E, p. 102 

(20)1,  

F(k_2)(z)= (1 ~i___~) ( ~ _ A )  1 u(z), 
(k-2) (k-2) (k - 2)! 

where 
u(z) F ( I +-2iA 1 - i A  = - - + k - 2 ,  

which satisfies the hypergeometr ic  equat ion 

- - +  k -  2 ; k - 1 ; z )  , 

z(1 - z) u"(z) + (k - 1)(1 - 2z) u'(z) - (2k - 3) 2 + A 2 4 u(z) = O. 

Then,  using the induction hypothesis  and (3.21), (3.20) follows for j = k with 

1 - r 4 ( 2 k -  3) 2 + A 2 r 2 
pk(A) = (k - 1 ) ~ p k - l ( A )  - 4 (1 - r2) 2pk-2(A) 

and 

1" 1 - r 4 ( 2 k -  3) 2 + A 2 r ~ 
qk(A) = (k - ) - - - ~ q k - l ( A )  - 4 (1 - r2) 2qk-2(A)" 

Finally we are going to show tha t  the two generators of I,  gl(A) and (1 + 

A2)g0(A), have no common zeros except ±i ,  and thus + i  are the only common 

zeros of all the functions in I.  

In fact, assume tha t  gl(A0) = (1 + A2)g0(A0) = 0, for some Ao ¢ +i .  Then  

it is clear tha t  gl(A0) = g0(A0) = 0, and, by (3.20), it follows tha t  gj(Ao) = 0, 

for every j >_ 0. Taking into account (3.17), this means tha t  the hypergeomet-  

ric function F(z) = F ( ( 1  + iA)/2, ( 1 -  iA)/2; 1; z) and all its derivatives vanish 

at  z = r2/(r 2 - 1). Therefore,  by analytic continuation,  we obtain tha t  F is 

identically zero, which is clearly absurd. 

3.9 By 3.3 every entire function g(A) in I is divisible by 1 + A 2, so G(A) = 

g(A)/(1 + A 2) is an entire function. Thus, by the theorem of Lindelhf-Malgrange-  

Ehrenpreis  (see either [Ka, p. 135] or [Ko, p. 22]), G(A) is an entire function of 

exponential  type. Moreover, since g(A) is an even function which has polynomial  

growth on •, it is clear tha t  G(A) also has these two properties.  Therefore  

I0 = { c ( A )  = 1 + : g e I } 

is a closed ideal in E'. 
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~ r t he r more ,  since the "common multiplicity" of the common zeros +i  in I is 

equal to l (see 3.7), the functions in Io have no common zeros. Therefore, by the 

spectral synthesis theorem of Schwartz (see [BZ2, p. 608]), the ideal I0 is dense 

in E ~, so, since it is closed, I0 = E ~. 

Finally, we wilt show that the identity I0 = E' implies the harmonicity of any 

function f • C(D) satisfying (3.5). 

In fact, I = (1 + A 2) • Io = (1 + A 2) • E' so 1 + A 2 • I,  and therefore ~h6tC = 
--~'-1(1 + A 2) • 2-. Then (3.5) implies that ] .  AhhK: = 0. But f *  AXh@ = 

Ahf  * @, by [Hel2, Thm. II.5.5], and (Ahf  * @, qo) = (Ahf, ~ ) ,  for every 

• 73(A/l), since Ah]  = Ahf .  Thus "f. ~Xh61C = 0 means that Ahf  = 0, that is, 

f is harmonic on l). We have just proved part a) of Theorem 1. 

3.10 Now we are going to prove part b) of Theorem 1, so we assume c = 0. 

Then we recall that I is generated by gl (see (3.18)) with r = R, by (2.4). 

The first half of part b) follows from the fact that gl has some zero Ao # =t=i, 

and then ),0 # +i  is a common zero of all the functions in I. 

Observe that,  since gl vanishes at +i  with multiplicity equal to 1, we only have 

to show that the function G that appears in the factorization (3.18) of gl has 

some zero. 

Using the Hadamard factorization theorem and [Hol, Thin. III.3.1] it is easy 

to check that  every nonvanishing entire function h of exponential type with poly- 

nomial growth on • has the form 

h ( z )  = e i' z+z ( z  • C), 

where a • R and /3 • C. But any nonconstant such function h is not even. 

Thus, since our G is a nonconstant even entire function of exponential type with 

polynomial growth on ~ (by the Lindelhf-Malgrange-Ehrenpreis theorem), G 

must have some zero. 

Therefore we have just shown that gl has some zero Ao # +i, so 

(3.22) 7R( o) = o (n  • z).  

We finish the proof of the first half of Theorem 1.b), by showing that (3.22) is 

equivalent to 

(3.23) ~ o  * T = 0, 

which means (recall (3.3)) that  the nonconstant radial real analytic function 

] = (~aao)~ on D satisfies (1.2). 
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In fact, since ~o~ o is a real analytic function on 3.4, so are ~o~ o *T and (~o~ o , , 

and therefore ¢ = [(~Xo * ~ )" ],~ is a real analytic function on D. Hence, by 

analytic continuation, (3.23) is equivalent to the vanishing of all the derivatives 

of ~ at the origin, which is just the meaning of (3.22) because 

- -  

- 1  j+k O~+k~ b ~, = ( ) 

3.11 The remaining part of Theorem 1.b) is proved by following the ideas in 

the proof of part a). 

For every j E J,  let 2-j be the ideal associated to the distribution Tj = TOD(O,R~) 
as defined in 3.3. Consider now the closed ideal ~ in Q(A4) generated by L.JjEJ~, j. 

Then the fact that f E C(D) satisfies (1.2), fo.r every j E J,  implies that  (3.5) 

holds. Recall that the "common multiplicity" of the common zeroes ±i  of the 

functions in I = .F(2-) is equal to 1, since this is true for every Ij -- .F'(2-j) (see 

3.7). Therefore, as we proved in 3.9, if the functions in I have no common zeros 

except ±i,  the function f is harmonic. Conversely (see 3.10), if ~ E C, ~ ¢ ±i,  

is a common zero of the functions in I then (!P:~). is a nonconstant radial real 

analytic function on D which satisfies (1.2). 

Hence to finish the proof of the theorem we only have to show that  the absence 

of common zeros of the functions in I, different from ±i,  is equivalent to the 

absence of common solutions of the equations (1.3). 

In fact, recall that we have proved that the closed ideal Ij is generated by the 

function 
I + A  2 

gl,j(~) - 4 Fj(~) (~ e C), 

where 

Fj(A)=F(3+iA 3-"  R~ ) 
2 2 ~ ;  2; 2 1 " ' R j -  

So I is generated by the functions gi,j, j E J, and, since Fj(±i) ~ O, the common 

zeros different from +i  of the functions in I are just the common zeros of the 

functions Fj, j E J.  

But, by [E, p. 140, 3.2(7); p. 148, 3.6(1)], we have that 

l=x) 
2 ' 2 ; 2 ; - -  ( z > l ) ,  
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- - 1 ~ i ~  w h e r e z =  2 , A c C .  Then it follows that  F j ( A ) = O f o r e v e r y j  E J i f a n d  

only if z is a common solution of (1.3). The proof of Theorem 1 is complete. 

4. P r o o f  o f  t h e  g e n e r a l  M o r e r a  t h e o r e m  

Our next goal is to prove Theorem 2. We will t ry  to imitate the approach 

followed in the circular case. So the steps which also work in the general case 

with the same proof will be only sketchily mentioned, and we will concentrate 

our at tention on the new steps or those that  require new proofs. 

4.1 We would like to point out that,  as in the circular case, the method of 

proof we are going to use can only determine whether a function is harmonic, or 

more generally, satisfies A/l-invariant differential equations. For that  reason, the 

following lemma is essential in the proof of Theorem 2. 

LEMMA 4: I f  f is an harmonic function on D that satisfies (1.4) then f is 

holomorphic on D. 

Proof: If  f is harmonic on 1~ then Re f ,  Im f are real-valued harmonic functions 

on I~, and therefore they are the real parts of some holomorphic functions on D, 

say 
OO OO 

g(z) = E a ,  zn and h(z) = E bnzn, 
n = 0  n = 0  

respectively. So 

f(z) = 

where 

o(z) + g(z) + i h(z) + h(z) 
2 2 - ~ - ~ c n z n + ~ d ~ - 2 n = f l ( z ) + f 2 ( z ) '  

n~-O n = l  

an + ibn "hn + ibn 
co = Reao + iRebo, c,~ - - - ,  dn - ( n > l ) ,  

2 2 

and these series are uniformly convergent on the compact subsets of ll). In par- 

ticular, f l  is holomorphic on • and f2 is anti-holomorphic on D and f2(0) = 0. 

Therefore f is holomorphic on D if and only if f2 - 0. 

By hypothesis, we know that,  for every a E A4, 

o = f(fo ldz 

= ~ ( f l o t T )  d z + ~ r ( f 2 o a ) d z  
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= ~r( f2oa)dz  

n = l  

and this series converges absolutely. (Note that  the third of the above identities 

follows from Cauchy's theorem and the holomorphy of f l  o a.) 

For the rotation a(z) = e-iez (0 E R), we have 

O= ~ dn gn dz e in°, 
n - ~  l 

the convergence of the series being absolutely and uniformly in 0 E R. Therefore 

O = dl (~r-~dz ) = dl ~ dS A dz = 2idl / dxdy -- 2idl area (~), 

where the second identity follows from Stokes theorem. Since obviously g/ has 

positive area we obtain that 0 -- dl = Of2/O~(O). Then the last argument in the 

proof of Lemma 1 (applied to f2 instead of f )  shows that 0f2/0-2 =- 0, and that 

means f2 is constant (recall that f2 is anti-holomorphic.) Finally, since f2(0) -- 0, 

we conclude that f2 -= 0, i.e., f is holomorphic. 

4.2 Next we rewrite (1.4) as the convolution equation (3.3), where now T = Tr 

is the compactly supported Radon measure defined by 

(4.1) T~  -- f r  ~(¢) de (~ • C(D)). 

Then the closed convolution ideal 2- in C~(A//) generated by all the bi-invariant 

distributions T * S, where S runs through E'(D), satisfies (3.5). 

4.3 We cannot continue following the "circular" approach due to the impossi- 

bility of computing explicitly the spherical Fourier transforms of (even simple) 

distributions in I ,  and then studying their common zeros. So in order to com- 

plete the proof of Theorem 2 we will follow a more indirect path which is inspired 

by the one followed by Berenstein and Shahshahani in [BS] while working on the 

Pompeiu problem. 

Since T obviously vanishes on the holomorphic functions, the computations 

made in the circular case (see 3.4) show that every function in the closed multi- 

plication ideal I = 9~(:/) of E I vanishes at ±i. By 3.9 we know that if the only 

common zeros of the functions in that ideal I are ±i,  and their multiplicities for 
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at least one of such functions are equal to 1, then f is an harmonic function on 

D. Thus, if we assume that  f is not harmonic, we obtain that  either there is 

some common zero A0 E C \ {4-i} of all the functions in I,  or every function in I 

vanishes at 4-i with multiplicity greater than or equal to 2. In the next subsection 

we will see that  the last possibility does not happen, and, moreover, the above 

common zero Ao ~ -t-i cannot be arbitrary. 

4.4 For every A E C, let ~ be the following complex power of the classical 

Poisson kernel on D: 

I+~A 

(1 =lz12~ ~ (zeD,~eOD). 
~ ' x ( ~ , c ; )  = Iz - (I 2 / 

We recall that  the function P~ (., ~) is an eigenfunction of the hyperbolic Laplacian 

(see [Hel2, p. 32, Lemma 4.1]), namely: 

(4.2) AhP~(., ~) = --(1 + A 2 ) ~ (  -, ~), for every ~ E OD. 

We also recall that a point A E C is called s imple  if the mapping g E L2(O•) 
g* E C °o (D) given by 

is one-to-one. 

g*(z) = ~oDPx(z, ¢)g(¢) Id¢l 

It is known that the nonsimple points are the complex points i(1 + 2k), for 

k e Z + (see [Hel, p. 46, Prop. 4.8].) 

We are going to show that the function h -- ~'(:F * ( - ~ ) )  C I does not vanish 

at any nonsimple point A E C, A ~ i, and its zeros +i  have multiplicity equal to 

1. Therefore there exists a common zero A0 E C \ (-t-i} of all the functions in I,  

which necessarily is a simple point. 

First observe that,  by (4.1) and Stokes' theorem, 

~0~(x (4.3) T ~  = 2i ~-~ + iy) dx dy (~o E $(D)). 

Now note that  (3.7), (3.8) and (3.9) hold, so by differentiating (3.16) we obtain 

k, k, Oz ] * ~x ( z ) -  (i- I z l ~ )  ~ = , , ,  _~ 
71" 
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Thus, by (3.7) and (4.3), 

= 2~ (r f~_2 1). r__2__TF,, (r_5_2_~_ 1) ] r  2 h(A) - 2 i f  0 {fao [ F' 1 - r  

where 

85 

= - i  F, r + 
r - 1  

r, r } 
(1 - r2) 2 dO 

(1 --r)  2 dO, 

f/o = { 0 < r <  l : re  i° E f t }  
(o < o < 2~). 

f/; = { 0 < r < l : v f r e i O c ~ t }  

By making the change of variable x -- r / ( r  - 1) we have 

h(A) (F'(x) + xF"(x)) ex dO, 
- -  JO 'a' 

where 

aN:{x<0: x ~ e  '°ca} (0 < 0 < 2~). 

Now, by [E, p. 58 (7)], 

d (xF ' (x) )  - 1 +;~2 d 
F ' (x)  + x F " ( x )  = dx 

So h(A) :L+_~ ho(A), where - - ' t  4 

ho(A) 

4 2 ' 2 ' 

(A c c) .  

Thus it is clear we only have to show that ho(i(1 + 2k)) 7t 0, for every k E Z +. 
In fact, for k E Z + we have 

(4.4) ho(i(1 + 2k)) = d ,; dx (xF(1 - k, 2 + k; 2; x)) dx dO, 

and we are going to prove the above assertion by showing that the derivative 
in (4.4) is positive. 

For k = 0 that derivative is 

1 
ddx(XF(1 ,2;2;x) )=~xx  ~ = (l---x) 2" > 0  (x<0) .  

(The first identity follows by analytic continuation since the corresponding hy- 
pergeometric series coincides with the geometric series.) 
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For k _> 1 the hypergeometric series of F(1 - k ,  2 + k; 2; z) terminates and again 

by analytic continuation it turns out that, for x < 0, 

d 
-5-- (xF(1 - k, 2 + k; 2;x)) 
dx 

k-1 (1 - k),~(2 + k)n 
= Z (2)nn! ( n +  1)x n 

n----O 

-- k - ~ ( k - 1 ) ( k + n + l )  n 
n=O 

> O, 

which completes the proof of the assertion. 

4.5 The He lgason  Four ie r  t r a n s f o r m  of a compactly supported function 

~v • LI(D) is given by 

The He lgason  Four ie r  t r a n s f o r m  of R • U(D) is defined by 

7R(~,  ~ )=  <R, 7,_~(., ()> 

We are going to prove that 

(4.5) :rT(+;~o, ¢) = 0, 

(;~ • c, ¢ • oD). 

for every ~ • 0D. 

In 3.10 we have shown that A0 being a common zero of all the functions in I 

is equivalent to (3.23). But 

and taking into account the formula 

( ~ ) ' ( g - l ( z ) )  = fop P_x(g(0), ¢) P~(z, •)[de{ 

(see [Hel2, p. 45 (35)]) we obtain that 

Therefore (3.23) means that 

fo ~,_~0(z, ¢)~-T(-~0, ¢)Id¢l = 0, for z • D. every 
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Hence, since 9rT(±,k0, .) E C~(OD) and, since by 4.4, the points ±,ko are simple, 

it follows that (4.5) holds. 

4.6 Now we are going to show that (4.5) implies there exists a solution S E 

$~(D) to the equation 

(4.6) AhS -- aS  = T, 

where a = - 1  - ,k~. 

Recall that there is an isomorphism 7 from the space Diff(D) of M-invariant 

differential operators on I~ onto the space of even polynomials in one complex 

variable such that 

L(P;~(. ,~))=7(L)(iA)P~,( . , ()  ( z e D ,  CEOD), 

for every L e Diff(D) (see [Hel4, pp. 10,94].) 

Let L0 = Am + 1 + A~. Then by (4.2) it is clear that 7(L0)(iA) = -A 2 + Ao 2, 

which only vanishes at A = +A0. From (4.5) it follows that 9rT(A, ()/7(Lo)(iA) 

is an entire function, for every ( C 0D. Thus we can apply the Helgason division 

theorem [Hel3, Thm. 8.5] to obtain the existence of a distribution S C $'(D) 

such that LoS = T, that is, S satisfies (4.6), with a = - 1  - A~. Note that a # 0, 

since Ao # ±i.  

4.7 The next step consists of showing that any solution S E E~(]I)) to the 

equation (4.6) must be a compactly supported continuous function u on D, whose 

modulus of continuity 

~(z,6)=sup{lu(z')-u(z)l:z'~D, Iz'- zl ~ 6} (z~D, 0<6) 

satisfies the following uniform growth condition on F: 

(4.7) supw(z,5)=O(61og~),z~r a s 6 " N 0 .  

(In the course of the proof we will show that a solution S E $'(D) to (4.6) is in 

fact unique.) 

In order to do that,  we need to write S in an adequate way. 

First of all, we find a fundamental solution N~ on D of Am - a, that is, N ,  is 

a locally integrable function on D such that 

(4.8) AhN~ - o~N~ = 5o. 
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As in the classical Euclidean case, the natural candidates for N~ are the radial 

solutions u to the equation A h u  = ~ u .  Taking into account the expression of the 

hyperbolic Laplacian in geodesic polar coordinates z = ( t a n h r ) e i ° :  

0 2 O 4 1 0 5 
Ah = ~ r  2 + 2coth(2r) + sinh2(2r ) 002 

(see [Hel2, p. 38(17)]), it is easy to obtain that the general form of those solutions 

is:  

(4.9) u ( z )  = A .  P~(cosh(2r)) + B .  Q,(cosh(2r)) (A, B • C), 

where a = v ( v  + 1) and P. ,  Q~ are the Legendre functions of degree u of the first 

and second kinds, respectively. (See IT, p. 269] where this proccess is carried 

out for the hyperbolic upper half-plane.) 

Since a = -1  - A~, v must be ( -1  ± A0)/2. For convenience, and without loss 

of generality, we may assume ReA0 _> 0 and then take u = (A0 - 1)/2, so that 

Rev > _! 
- -  2 "  

But P,(cosh(2r)) is a C ~ function on ll) (see [L, p. 167]), so the only candidates 

for N~ are obtained by setting A = 0 in (4.9). Then u is a locally integrable 

function on D because its singularity at the origin is logarithmic. In fact, we have 

the estimate 

(4.10) O~(coshx) ~ - log(1  - e -~) (x \ 0), 

which holds for Rev > -1  (see [E, 3.9 (7)]) and so for our selection of v. 

Now taking into account that 

1 
(4.11) Q'~,(x) ~ 1 - x 2 ( x  ~ 1) 

(see [E, 3.6(5), 3.9(9)]), a standard argument based on the second Green's formula 

shows that 

(4.12) N , ( z )  = - ~ Q ~ ( c o s h ( 2 r ) )  = 

is the fundamental solution we are searching for. 

Lifting (4.8) from D to A4 we obtain: 

A h N .  - ~N~  = 6~. 

Then, since L = Ah --a  is an AJ-invariant differential operator on the symmetric 

space AA/tg =~ D, by [Hel2, Thm. II.5.5] we have that 
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S = (T*N~)~ 

is the only solution in $r(D) to the equat ion (4.6). Prom this expression it is easy 

to see tha t  S coincides wi th  the locally integrable function 

u(z) = f G~(z, w)dw for a.e. z C D, 
J r  

(4.13) 

where 

(4.14) 
- - W )  C~(z,w)=g~ ~ (z, weD, z # ~ )  

is the Green 's  function of Ah -- ~. 

Finally, we are going to show tha t  the integral in (4.13) defines a continuous 

function on D (which we continue calling u). In fact, observe tha t  the above 

integral  defines a C ¢¢ function on D \ F. Moreover the integral also makes  sense 

for z E F because the singulari ty of G,~(z, .) at w = z is logari thmic.  Namely,  we 

have t ha t  

1 logp(z,w), as p(z,w) ~ O, (4.15) G~(z, w) ,'~ 

where p is the pseudohyperbol ic  distance (see (2.3)). (The above es t imate  directly 

follows f rom (4.14), (4.12) and (4.10).) 

Thus  the integral  in (4.13) defines u everywhere  on B and u is C ~ on ID "-. F, 

so we only have to show tha t  it satisfies (4.7). 

Since F CC tD, in order to prove (4.7) we can replace in the definition of w(z, 5) 

the Eucl idean distance ]z p - z I by the pseudohyperbol ic  distance p(z ~, z). In fact, 

if K is a compac t  subset  of D, we have tha t  

(4.16) p(z', z) ~_ Iz' - z] (z', z E K). 

Let z0 E F and Zl E D such tha t  0 < p(zl,zo) < 5 < ½. Then  

= J- i -J  I. 

We are going to show tha t  bo th  J and J '  are 0(51og(1/6)), as 6 "~ 0. 

We es t imate  J in the following way: 

J _< [ Iao(zo, w)l Idol + f IC (z , Idol = + J2. 
J r  nA2~ (zo) drnA26 (z0) 
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Using equation (4.15) we conclude that 

I 1 
J1 -~ log 1 idwl (0 < 5 < -~). 

- na~,(zo) p(zo, w) 

Obtaining a similar estimate for J2 is a little more complicate. Note that  

A2~(zo) C A3~(zl). Let wl E F be such that p(zl, Wl) = p(zl, F). Then we have 

rnA3~(zl) c rnA4~(Wl) and p(w, wl) ~_ 2 p(w, zl), for every w E FAA3~(zl). 

Therefore 

f r  1 5 1 J2 -~ log Idwl, (0 < < ~). 
- nA46(wl) p(W, Wl) 

Thus in order to complete the estimate of J we only have to prove that 

(4.17) f r  log 1 [dw[ -< 5log ~, 
nA~(z) ~ - 

for 5 > O small and z E F. 

Since $2 is a Lipschitz Jordan domain, the arc length distance between two 

points w and z in F, i.e., the smallest length of the two arcs in F joining w and 

z, is comparable to their Euclidean distance Iw - z[. The above fact and (4.16) 

imply that there are constants C > 0 and c > I such that, for 5 > 0 small enough 

and for every z E F, we have 

fF fc~ 1 1 
nLX,(z) l ° g ~ l  i d w l < C  l _  Jo log-~dt<cCSlog-~.  

Now we want to obtain the estimate for J~. 

Taking into account (4.11) it is easy to check that, given 0 < Po < 1, we have 

that 

-~z - p(z, w) - (z, ~) , 

for z, w E D, p(z, w) <_ Po. 
Moreover, 

p(zo, w) < 2p(z, w), for every w E F \ A2~o (z0) and z E A6(zo). 

Therefore, by the mean-value theorem and (4.16) we obtain 

]G. ( z~ ,w) -G. ( zo ,  w)l-~ p(Zx, z0____~) (w  c r \ ~ ,2~(zo) ) .  
- Iz0 - ~1 
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This estimate and the fact that  arc length distance and Euclidean distance are 

comparable on F show that  there are constants C, c > 0 such that  for small 6 > 0 

we have that  

J'  <_C - d s  "p(z l ,zo)<_ .61og~,  
6 8 

where g is the length of F and C' > 0 is a constant that  only depends on c, C 

and g. Hence we have just proved the estimate for J' ,  and we have finished the 

proof of (4.7). 

Finally note that  the continuous function u is compactly supported in D be- 

cause the distribution S is. 

4.8 We have just seen in 4.7 that  there is a compactly supported continuous 

function u on 1~ satisfying 

(4.18) AhU -- au  = T, in the sense of distributions. 

Since T is supported on F, (4.18) implies that  

AhU -- au  = 0, on D \ F. 

Therefore u is real analytic on D \ F, because the differential operator A h -- a 

is elliptic. But u has compact support in D, 12 is relatively compact in ~) and 

D". 12 is connected, so, by analytic continuation, we have that  u = 0 on I I ) \  12. 

The continuity o f u  shows that  also u = 0 on F, i.e., u = 0 on D \  12. 

4.9 The next step consists of showing that  the constant a is real and, in fact, 

a < O .  

Observe that  T belongs to the Sobolev space H-1  = H_I(C)  (here we use the 

notation of IF, Ch. 6]). In fact, (4.3) and the Schwarz inequality show that  

f 0 ~  0~ 
i (T '~P)I=2 7~ -~2(z) dm(z )  <2v/-~ ~ L~(C) (9E7~(C)) .  

Thus T E H-1  C H~[(II)), and, since Ah -- a is a second order elliptic op- 

erator, it follows from (4.18), by the local regularity theorem IF, (6.30)], that  

u E Hi°c(D), which means that  u and all its first order (Euclidean) partial 

derivatives (in the sense of (Euclidean) distributions) are locally square inte- 

grable functions on D. 

The fact that  a is negative is a consequence of the identity 

f lul = - i f IV,,ul,  d., (4.19) (~ 

Ja  Ja  
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which we shall now prove, because the above two integrals are finite and positive. 

Here [. [h denotes the hyperbolic norm for vectors in the tangent bundle T(II~) 

of D, which by (2.1) is given in terms of the Euclidean norm by the formula 

(4.20) IX[ 2 - IXl2 (1 -Iz[2) 2 ( x  C T~(D), z C D). 

Therefore the hyperbolic gradient VhU and the Euclidean gradient Vu of u are 

related by 

(4.21) Vhu(z) = ( 1 -  ]z]2)2Vu(z). 

Thus 

/ [VhU] 2dp = /~  [Vu[ 2din. 

Now, for ~ > 0 small, consider the "approximating" open set 

gt6 = { z E ~2: dist(z, F) > 6 }. 

(Here "dist" means Euclidean distance.) 

Take ~ E D(~t) so that 0 _< ~ < 1, ~ = 1 on ~t6 and IV~ ~] _< C/~, where C 

is a positive constant independent of 6 (see [Hor, Thm. 1.4.2].) Since u C H]°C(~)) 

we have that 

a ~ [u'2 dp = lim a f~ ~ [u'~ 

and 

~l VhUl~h d# = lim ~ ~ IVul 2 din. 6"..~o 

But, taking into account that Ahu = au on f~, by integration by parts we obtain 

that 

a /  ~'lul2d. = ffl a' Audm 
= -/ f l (Vu,  V(~6u))dm 

So to complete the proof of (4.19) we only have to show that 

(4.22) 6\01im/(Vu, V~ 6) ~dm = O. 
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Let gt 6 = ~2 \ ~ .  Then the properties of ~ and the Schwarz inequality imply 

that  

c Iw, m 

Since u = 0 on F and the modulus of continuity of u satisfies (4.7) it follows 

that there is a constant C' > 0 such that  

1 1 
lu(z)l < C' dist ( z ,F ) log  dist (z,F) -< C'61og ~, 

for every 6 > 0 small enough and for every z E ~2 ~. Moreover, since F is a 

Lipschitz curve, we have that  

area (f~) = 0(~), as 5 "N O. 

Putt ing all these observations together, we obtain that 

/n(Vu, V~o~) ~dm O (6½ l o g 6 )  = , a s 6 \ 0 ,  

from which (4.22) dear ly  follows. 

4.10 Recall that u E C(~)  M C2(~2) and satisfies 

(4.23) ~ AhU--~u=O in~2, 
[ u=O o n F .  

Since by hypothesis fl is a Jordan domain of class C 2,~, 0 < ~ < 1, by the 

regularity theorem [GT, Thm. 6.19] for elliptic operators, u must be of class C 2,E 

on Y~. Now we are going to get more boundary conditions on u from the equation 

(4.18). 

In fact, taking into account (4.18), that  u = 0 on D \  ~ and u E C2(~), by 

using the (hyperbolic) second Green's formula, we obtain, for every ~o E D(D), 

that 

frCP(z)dz = ~ u(Ahcp--a~o)dlt 

= /n~(/Xhu-au)d#+ fr(uO~°-~ff-ff~h)dsh 
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where Sh and nh denote the hyperbolic arc length of F and the hyperbolic unitary 

outer normal to F, respectively. Therefore 

(4.24) ~ ~ dSh = - ~(z) dz (~ e 7)(D)). 

But (4.20) shows that  the relation between the Euclidean unitary outer normal 

n to F and the hyperbolic one is nh = (1 -- ]z] 2) • n, which together with (4.21) 

implies that  
Ou 2 0 u  

= (1 - t z [  )-a---. 
Onh 

And, denoting by s the Euclidean arc length of F, by (2.2) we conclude that 

Hence (4.24) means that 

(4.25) 

~ u  
~ Ou d s h = ~ r ~ - ~ n d S .  

Jr Onh 

= - r ' ( s ) .  

We want to deduce from the preceding identity some boundary conditions on 

the partial derivatives of u. 

Consider the coordinates z = Xl + ix2.  Put  F(s) = Xl(S) + ix2(s) and u = 

v + iw.  Then n(s) = n(F(s)) = x'2(s ) - ix'l(s), and (4.25) can be written as 

(Vv, n ) = - x  i and (Vw, n ) = - x ~ .  

Since u = 0 on F, we get that  Vv and Vw are orthogonal to F'(s) at F(s), so 

they are proportional to n at F(s). And from the above two identities we deduce 

that  
! 

V v = - x  1 . n  and 

i , e ° ,  
Ov 
Ozl - -  

t ) w  

OXl 

In particular, we obtain that 

Ov 
Oxl 

! 
~Tw - -  - -X 2 • n ,  

t I Ov 
' Z l  X2'  0 ~  - -  (X~)2 '  

Ow Ov Ow 
+ ~ = 0  and Ox2 Oxl - 1  o n F .  

4.11 We know that  the real and imaginary parts, v and w, of u are C 2,~ 

functions on ~,  because so is u. Rewriting (4.23) in terms of v and w and adding 

the boundary conditions we have just obtained, we get that those two real-valued 
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functions are solutions to the following system of elliptic equations with boundary 

conditions: 

I AhV--O~V = 0 l i n f~  
AhW--O~W = 0 } 

(4.26) V = W  = 0 
o, Ow _ 0 on F + oz2 
ov ow _ 1 

o~2 ozl 

Note that,  in order to obtain the first two equations from (4.23), we use the fact 

(proved in 4.9) that  c~ is a real constant. 

From now on we will use a semicolon and subscripts to denote partial deriva- 

tives, e.g., h;j is the partial  derivative of h with respect to the jth variable. 

In order to complete the proof of Theorem 2 we will show that  we can apply 

to (4.26) a regularity theorem for elliptic systems with boundary conditions (see 

[KS, Thm. VI.3.3 D which will imply that  r is a real analytic curve. 

But this regularity result is stated for flat boundaries. So, first, we are going 

to consider, for every point z ° E I' ,  a local change of variables of class C 2,~ which 

makes F "flat" in a neighborhood of that  point, that  is, in the new variables F is 

just described as a segment of a straight line in a neighborhood of z °. 

Let z ° = x ° + ix ° • I'. By changing the sign of the variables and the order of 

the variables and the functions v and w, if it is necessary, we may assume that  

v;2(z °) # 0. (Here we are using the last boundary condition of (4.26).) 
Consider the following change of variables, the so-called z e r o t h  o r d e r  hodo- 

graph transformation (see [KS, p. 186]): 

Yl = Xl -- xOl 

Y2 = v 

In fact, the inverse mapping theorem shows it is a local C 2'e change of variables 

at z ° since v;2(z °) # 0. (Observe that  the y-coordinates of z ° are Yl = Y2 = 0.) 

For the same reason, the implicit mapping theorem assures us that  the curve 

F is described, in a small neighborhood/4 of z °, by the equation v(xl,x2) = 0 
in the x-coordinates, so it is described by y2 = 0 in the y-coordinates, i.e., 

F N/4 = / d  N {Y2 = 0}. Therefore, the part  of f~ lying in a small neighborhood of 

z ° is described by one of the equations Y2 > 0 or Y2 < 0. 

Note that  x2 = ¢(Yl, Y2), where ¢ is a function of class C 2,e in a neighborhood 

of the origin. Then a straightforward and tedious calculation shows that  the first 
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two equations of (4.26) written in the new variables are: 

(2¢;1 1 1 + ¢:21 ) 
(4.27) 0 = A ( y ) \  ¢;2 ¢;12-~-~;2¢;11 ~3';2 ¢;22 - a Y 2  

(4"28) 0 = A(Y) ( W;11-2¢;1¢;2 ,-1+¢:21 ) W;12 + ~ W;22 + 

(2¢,, 1 1÷¢2;1 ) 
¢;,1 ¢32 ¢;22 

where m(y) = (1 - (Yl +x° )  2 - ¢2)2 and W(y) = w(yl +z °, ¢(y)), which also is a 

function of class C 2'*. The above equations (in ¢ and W) hold in the intersection 

of a small neighborhood/t/of z ° with ft. 

The boundary conditions of (4.26) in the new coordinates are: 

(4.29) w = 0 

(4.3o) w;2 = ¢;1 

1+¢2;1 
W;1 - 1, 

¢;2 

and they hold on/4 N {Y2 = 0}. 

Observe that the four equations (4.27)-(4.30) do not change formally when 

you change the sign of both variables. Since from now on we only will use 

those equations, it follows that we may assume the part of Y~ lying in a small 

neighborhood H of z ° is/4 N {Y2 > 0}, i.e., ~/N H = H N {Y2 > 0}. 

Thus we can check the hypothesis of the regularity theorem [KS, Thm. VI.3.3] 

for that system of elliptic equations with boundary conditions. 

Since the system (4.27)&(4.28) is clearly nonlinear, we have to compute first 

the linearization or variational equations (see [KS, p. 192]) of that system and 

the boundary conditions (4.29)&(4.30): 

Ljl(y,D)¢(y) + Lj2(y,D)W(y) = 0 

Bjl(y,D)¢(y) + Bj2(y,D)W(y) = 0 

i n / 2 n  {Y2 > 0}, j = 1,2 

on H N {Y2 --= 0}, j = 1, 2. 

Here we are following the notation and definitions of [KS, pp. 190-2]. 

Due to [KS, Thm. VI.3.5], we only have to check the ellipticity and coercivity 

(with respect to some weights) of the above system of variational equations at 

the origin. 
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It turns out that  the order of Ll l ,  L21 and L22 is 2, while L12 =- 0. Thus 

we pick the obvious choice of weights: Sl = s2 = 0 and tl  = t 2  - -  2. Then the 

"principal symbols" (with respect to those weights) of the Ljk's are: 

L~l(y,~ ) = P(y,~),  L~2(y,~ ) = 0, 

L~l(y,~) = P(y ,~)  W;2, L~2(y,~) = -P(Y,~)¢;2,  

where 

; ) + " 

Thus it is clear that the "principal symbol" matrix (L~k(y, ~)) has rank equal to 

2 at the origin, for every ( E ]~2 \{0} .  

Moreover, for every pair of independent vectors ~, ~ E ~2 \ (0} the polynomial 

p(z) = det(n~k(0, ~ + z~)) = - (P(0, ~ + z~)) 2 ~;2(0), 

with real coefficients, does not vanish on the real line, so it has exactly # = 2 

roots with positive imaginary part and # = 2 roots with negative imaginary part. 

Therefore we have just proved that the system (4.27)&(4.28) is elliptic with 

the chosen weights in ~ N/4, for some small neighborhood/4 of the origin. 

On the other side, we have that 

Bll(Y, ~) -- 0 B12(Y,~) -- 1 
B21(u,  = -i 1 B22(y ,  = i 2. 

Thus we can take the obvious weights r l  = - 2  and r2 = -1 ,  so that the order of 

Bhj is less than or equal to rh + t i • Then the corresponding "principal symbol" 

B~j of Bhj coincides with Bhj, for every h , j  = 1, 2. 

It is clear that Sl + tl + s2 + t2 --- 2p. Therefore, in order to show that  the 

boundary conditions (4.29)&(4.30) are coercive for the system (4.27)&:(4.28), we 

only have to check that the system of equations 

L~I(O,D)U + L~2(0, D)V = 0 

B~I(O,D)U + B~2(O,D)V = 0 

in R2, j = 1,2. 

on Y2 = 0, j = 1,2 

admits no nontrivial bounded exponential solutions of the form: 

(4.31) U(y) = ei~V'~(y2), V(y)  = ei~ '~(y2) ,  
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with ~ e R'-{0}.  

In fact, the explicit expression of the above system is: 

1 q- ¢;21 -- 21/);1 U.12 ~-~ 0 in R 2 U;ll  ~- ~ U;22 ¢;2 ' 

1+ v _2¢;1 
;2 ¢;2 

V ( y : , O )  = 0 

V;l(Yl,  O) - V;2(y:, 0 ) = O, 

where all the partial derivatives of ¢ are evaluated at the origin. 

If the functions given by (4.31) are solutions to that system then both ~o and 

~0 satisfy the homogeneous second order linear differential equation 

1+¢;21 ,b., 
g " ( t )  - 2 i ~ . ] 2 : g ' ( t  ) - {2g(t) = 0, 

and the boundary conditions ~o(0) = 0 and ~o'(0) = i{ ~o(0). 

The general form of the bounded solutions to the above ordinary differential 

equation is g ( t )  = c .  e at, c being an arbitrary constant and 

a =  \-~-~;2~+ ¢;2 ] 1+¢;2:" 

Thus the boundary conditions on ~o and ~o imply both functions must vanish 

identically. 

Therefore we conclude that we may apply the regularity theorem [KS, Thm. 

VI.3.3] to the solutions ¢ and W to our system (4.27)-(4.30) to obtain that they 

must be real analytic in some neighborhood of the origin. In particular, v is also 

real analytic in some small neighborhood of z °. And, since the equation v = 0 

describes F in that  neighborhood, we get that,  for every z ° E P, F admits a real 

analytic parameterization in some neighborhood of z °. So we conclude that P is a 

real analytic curve, which is a contradiction to our hypothesis. Hence Theorem 2 

has been proved. 

5. Proof  of the general mean-value theorem 

The proof of Theorem 7 is carried out along the same lines as that of Theorem 1. 

For this reason, we will follow closely that proof, but without making explicit 

reference to it every time. 
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We only want to emphasize that the main difference between the proofs of the 

two theorems, loosely speaking, lies in the spherical Fourier transforms involved, 

and the discussion of their common zeroes. 

5.1 First we want to write condition (1.8) in terms of integrals over a circle 

centered at the origin. 

We know that the Euclidean disk D = D(c, R) coincides with the pseudohyper- 

bolic disk A(c0, r) whose center co C D and radius 0 < r < 1 are given by (2.4). 

Thus the automorphism a0, defined by (3.1), maps OD onto OD(O,r), and by 

making the change of variable r~ = a0(() we obtain the following identity: 

f0 [d~[ f0 Idol, for every E C(D). (5.1) g ( ~ ) ~ R  = 7)D(-rco,~?)(goaol)(r~)--~- g 
D 

If we apply the above formula to the function g(() = ~PD(a, ~) (f o (r o 6r0)((), we 

obtain that (1.8) is equivalent to 

fo IdOl D'PD(--rCO, ~)"PD(a, aol(r~)) ( f  o a)(r~) ~ = ( f  o a)(ao), for every a • A,4, 

where ao = ao(a) • D(0, r). It is clear that the above identity can be written 

as the convolution equation (3.3) in 2t4, where now T = TOD,~ is the compactly 

supported Radon measure on D given by: 

r~--- ~D VD(--rc°'~)TDD(a'cr°l(r~))~(r() ~-~-~[ --~(ao) (~•  C(D)). 

Observe that T~ = 0 for every harmonic function ~ on D, and, in particular, T 

vanishes on the constant functions. 

5.2 Let Z be the closed (convolution) ideal in E~(G) generated by the distri- 

butions of the form T * (Dj,k~o) ~ , j, k _> 0. Let I = .T(Z) be the corresponding 

closed (multiplication) ideal in E ~. We know that this closed ideal is generated 

by the functions hj, f j ,  j _> 0, given by (3.13) and (3.14). 

Now let us compute those generators. Taking into account (3.7) and (3.15) it 

is clear that 

h3 = F (5/ ~ 

where 

15 

\la012 - 1 ] a 0 ~  ~- ' 

= fo~PD(-rc°'()P~(~'~°l(r())C~ ld(j2~ 
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= J~o "]DD(a'~) IdOl D 27rr 

The preceding second and third identities follow from applying formula (5.1) 

to the function g = (Yo/r) j and from the harmonicity of that  function on D, 

respectively. 

Therefore 

{ ( r2 ) 1 F(j)( ,ao~ ) 1 } 
hj = (--do) j F (j) ~ (1 --r2)J \ laot  2 - 1 (1 - lao]2)  j " 

Similarly, using now (3.7) and (3.16), we obtain that  

1 F(j) 1)(1- } fj=(_ao)J{F(J)(r~2_l) (1---r2) j ( laol 2 1 
lao-~ ~ laol2)J • 

Hence I is generated by the functions 

( r 2 ) 1 F(j)( laol 2 ) 1 
gJ = F(J) ~ (1 Sr2)J  lao-~- 1 (1- lao[2)J  ' (J -> 0), 

since ao ~ 0, because, by hypothesis, a ~ co. 

5.3 We know that,  since T vanishes on the constant functions, + i  are common 

zeroes of all the functions in I. On the other hand, go vanishes at :ki with 

multiplicity equal to 1. In fact, observe that  

[ go(A)= F ~ x=la°l ~. 

Then, taking into account the formula 

F(a,b;c; z) = (i - z)-aF (a,c-b;c; -~_-~z ) 

(see [E, p. 64 (22)]), we have, for 0 _< x < 1, that  

F )l_~x (l+iA l+iA 1 ; x ) 2  ' 2 = (1 - x  F ; 

- -  .Jr- 

(Re z < 1/2) 

xk 
(1 - x) 1~'~ E k T ] k_l (k!)2" 

k = l  
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So go =- gol + go2, where 

gOl(/~): [(X--x)l-'~X]:2 aD] 2 , 

and go2 vanishes a t  i with mult ipl ici ty greater  or equal t han  2. But  

1 r 2 
g~l(i) = 2 log  1::T~2 #0, 

since la01 < r. Therefore  we conclude go has a zero wi th  mult ipl ic i ty  equal  to 1 

at  i (and then  also at  - i ,  since go is an even function).  Here it is interesting to 

note tha t  all the o ther  genera tors  gj, j > 2, of I vanish at  ~:i with mult ipl ic i ty  

grea ter  than  or equal  to 2. 

In  order  to finish the proof  of Theorem 7 it is clear tha t  we only have to show 

tha t  ± i  are the unique c o m m o n  zeroes of the functions g j ,  j > O. 

By mul t ip lying equat ion (3.21) by (1 - z) k-u and pu t t ing  z -= t / ( t  - 1), 0 < 

t < 1, we obtain,  for every k _> 2, tha t  

( 2 k - 3 ) ~ + ~  ( t ) 
- 4 ( l _ t ) k _  2 F (k-2) t--L-- ~ . 

Therefore  we have that :  

where 

1 
r21aol: ( l a o l ~ ( r ~ )  - r2~( laol : ) )  

(k - 1)(1 + [aoi2)g~_l(~)  _ (2k - 3) 2 + A 2 
laol ~ 41aol2 g~-2(~)  
laol ~ - r2 

+ r21ao12(1 - r2 )k -2Gk(A)  , 

(5.3) G k  = t -  r -  F ( k - 1 )  ~ 4 r--2~-1 " 

Since laol < r it follows tha t  every c o m m o n  zero A0 E C of the functions gk, 

k > 0, mus t  be also a c o m m o n  zero of the functions Gk, k >_ 2. 

Taking into account  (5.2) for t = r 2, we get tha t  

) (r )t e a  1 - r  ~ [ 1 - r  2 ~ - ( k - 1 ) F  (~-1) ~ . 
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Then the holomorphic function Fo(z) = F(  I+i~Q 1-i~Q ; 1; z) in Re z < 0 satisfies 2 ' 2 

F(ok)(Xo) = (k - 1)(1 - rZ)F(ok-1)(Xo ), for every k >__ 2, 

r 2 
where x0 --- ~-r~_l. It follows by induction that 

(5.4) F(ok)(Xo) = (k - 1)!(1 - r2)k-lF~(xo) ,  for every k > 2. 

If F~(xo) = 0 the above formula shows that F(ok)(Xo) = 0, for every k >_ 2, and, 

by analytic continuation, F0 is constantly equal to F0(0) = 1, and therefore A0 

must be equal to +i. 

Assume now F~(xo) ¢ 0. By (5.3) with k = 3, we have that 

(5.5) F~'(xo) - 9 + )~______~ (1 - r2)F~(xo). 
8 

Then by comparing (5.4) and (5.5) we get that Ao 2 = -1 ,  i.e., Ao = +i. Hence 

the proof of Theorem 7 is complete. 

6. S o m e  r e l a t e d  p r o b l e m s  

The purpose of this section is to discuss some problems related to those we deal 

with in the preceding sections of this article. Roughly speaking, we are going 

to consider the versions of the preceding mean-value and general mean-value 

problems where the Mhbius group AA acts on the circle OD instead of on the 

function f .  

6.1 Let D = D(c, R) CC 9 be fixed. Since the relatively compact Euclidean 

disks in D coincide with the pseudohyperbolic disks, we know that,  for every 

a E .M, a (D)  is a relatively compact Euclidean disk in D, namely, a (D)  = 

D(c~, R~) CC D. Thus, if f is an harmonic function on D, it is clear that 

f~ ]d(I = f (ca) ,  for every a e A4. (6.1) 
(OD) 

The problem now is to study whether every continuous function f on D satisfy- 

ing (6.1) is harmonic. 

It is evident that condition (6.1) can not be rewritten as a convolution equation 

on AA. So the methods we used in this paper are not applicable to this situation. 

Note that the corresponding version of the Morera problem is just equivalent to 

the invariant version we discuss in 1.2 (see Theorem 3). 
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We can only supply a partial  solution to the mean-value problem we have just  

stated: 

THEOREM 8: I f  f is a bounded continuous function on D which verifies (6.1) 

then f is harmonic on D. 

This result is just  a part icular  case of the following theorem of Heath  (which 

he proved using probabilistic methods) :  

THEOREM 9 ([Hea, Thin. 2]): Let f be a bounded continuous function on D. 

Let & D --* • be a function such that 0 < ~(z) < 1 - [z], for every z 6 D, i.e., 

is a radius function. 

Assume that the radius function ~ satisfies 

(6.2) I~(z) - 5(~)1 --- k [z - wl,  for  every z, w C D, 

for some constant 0 < k < 1. 

Suppose f possesses the restricted mean-value property on circles with respect 

to the radius function 5, i.e., 

fo IdOl = f ( ( )  2~r~(z)' for every z e D, f(z) D(z,~(z~ 

Then f is harmonic on D. 

(Theorem 9 is the unit  disk version of the original Heath  result, which holds on 

arb i t rary  proper  open subsets of R ~, n _> 2.) 

6.2 We are going to show how Theorem 8 follows from Theorem 9. 

Observe tha t  if Co and r are the pseudohyperbolic center and radius of  D -- 

D(c, R), respectively, and ~ 6 A4, then a(D)  = A(a(co),  r),  and so 

1 - r 2 1 - [a(Co)[ 2 (see (2.4)). 
c~ = 1 - r2[o'(c0)[ 2 o'(co) and Ro - 1 - r2[a(co)[ 2 r 

Since the function 
1 - r 2 

~(x) - 1 - r2x ----------~ x 

maps the interval [0, 1) onto itself, it is now clear tha t  for every z 6 D we can 

select some a = az 6 A/{ such tha t  c~ = z. Then  if a continuous function f on 

D satisfies (6.1), it possesses the restricted mean-value proper ty  on circles with 

respect to the radius function 

6(z) = 1 - I~z (c0 ) l  = r. 
1 - r2[az(Co)} ~ 
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Therefore Theorem 8 will become a particular case of Theorem 9 once we check 

our radius function 6 satisfies condition (6.2). 

In fact, for z , w  E D, z # w, putting a = az(Co) and b = a~(Co), we have that 

16(z) - 6 (w) l  - - ( 1  - r 2 ) r  I la12 - Ibl~l 
(1 - ~ l a l ~ ) ( 1  - r21bl~) 

and 

Thus 

IZ - -  W I 
I~(1 - ~lbl  ~) - b(1 - r 2 l a l 2 ) l  

= ( 1 -  r ~) i i - : r ~ 7 ( f _ - - ; ~ l ~ -  ~ 

I1~1(1 - ~ l b l  ~) - Ib](1 - r~ l~ l~) l  

= (1 - r 2 ~  (1 +r21al" I b l ) I f a l -  Ibll 
' (1 - r21a12)(1 - ~ l b l  2) " 

16(z) - 6(w)] lal + Ibl 2r 
iz _ wl < r 1 + r21al • Ib] < 1 + r -------i" 

The last inequality follows from the fact that the middle term of the preceding 

chain of inequalities is an increasing function on any of both variables, lal or Ib[, 

separately. Hence our radius function satisfies (6.2) with k = 2r/(1 + r2), which 

obviously satisfies 0 < k < 1, and the proof of Theorem 8 is complete. 

6.3 Finally we would like to state a general mean-value problem of a similar 

nature to the preceding one. We are going to use the notation introduced in 1.4, 

together with the one we employed in 6.1. 

Let D = D(c ,  R )  C C  D and a E D be fixed. Then the problem is to decide 

whether every continuous function ] on D possesing the following general mean- 

value property has to be necessarily harmonic: 

(6.3) ~ 7-~a(D)(a(a) , ( )](~)  td(I -- f ( a ( a ) ) ,  for every a e M. 
(OD) 2 r R ~  

Obviously every harmonic function on D satisfies that  property. On the other 

hand, it is clear that  (6.3) cannot be written as a convolution equation in the 

group A,l, so, once again, we can not use the techniques employed in the present 

work. Moreover, we ignore whether a "restricted" general mean-value theorem 

(playing the same role that Theorem 9 does for the preceding mean-value prob- 

lem) holds. Thus we even do not know the solution to that problem in the 

particular case of bounded functions. 
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